a2 United States Patent

US009164697B2

(10) Patent No.: US 9,164,697 B2

Moretti 45) Date of Patent: Oct. 20, 2015
(54) METHOD AND ARCHITECTURE FOR (56) References Cited
HIGHLY SCALABLE DATA STORAGE
U.S. PATENT DOCUMENTS
(71) Applicant: Samsung Electronics Co., Ltd.,
Suwon-si (KR) 6,141,707 A * 10/2000 Halligan et al. 710/36
8,549,516 B2* 10/2013 Warfieldcccoccovevennnne 718/1
(72) Inventor: Michael Moretti, Saratoga, CA (US) 8,880,800 B2* 1172014 Mathew etal. ... - 71114
* cited by examiner
(73) Assignee: SAMSUNG ELECTRONICS CO.,
LTD. (KR) Primary Examiner — Idriss N Alrobaye
(*) Notice: Subject to any disclaimer, the term of this ~ 4ssistant Examiner — Richard B Franklin
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Renaissance IP Law Group
U.S.C. 154(b) by 129 days. LLP
(21) Appl. No.: 13/924,622 (57) ABSTRACT
(22) Filed: Jun. 24,2013 An invention is provided for highly scalable data storage. The
invention includes a logical storage device having a logical
(65) Prior Publication Data device queue, where the logical device queue includes a plu-
US 2014/0379947 A1l Dec. 25, 2014 rality of command slots for storing input/output commands.
Also included is a plurality of I/O worker processes, each
(51) Int.Cl. associated with a command slot of the logical device queue,
GOGF 3/00 (2006.01) and a logical device queue process which is associated with
GOGF 13/12 (2006.01) the logical storage device. When a command is placed in the
GOGF 3/06 (2006.01) logical device queue, the logical device queue process pro-
(52) U.S.CL vides an index for the command to an I/O worker process
CPC ... GOG6F 3/0659 (2013.01); GO6F 3/0604 associated with the command slot storing the command. The
(2013.01); GO6F 3/0685 (2013.01) /O worker process then obtains the command from the logi-
(58) Field of Classification Search cal device queue and facilitates completion of the command.

None
See application file for complete search history.

20 Claims, 6 Drawing Sheets

/— 202

OS Block Driver

200

Logical
Device
A

Logical
Device

Logical
Device
c

Logical
Device

Logical
Device

Queue

302a

Block
Device A
Queue
Process

SAL /0 SAL O SAL IO

Worker Worker Worker

Process Process Process
308a 306b 306c

SAL IO

Worker o000 Worker

Process

\ A\

306d 306n

Process

US 9,164,697 B2

Sheet 1 of 6

Oct. 20, 2015

U.S. Patent

AT

0000
000
(NI

- L T

(A1 zol

US 9,164,697 B2

Sheet 2 of 6

Oct. 20, 2015

U.S. Patent

N i / -

¢ '9Old

arolL

adH aaH

9390¢ | PP90Z | 2990
3 a bo) < v
ao1naqg | ao1aeq | @o1nag | @d1Aeq | @a1neg

leaiBo | [eo1Bo | [eo1Bo | [eaibo | es1Bon

390¢

3
ELIIEY |
leaibo

EQQC
a 2 g v
aoinaqg | @s1meqg | eoiaaqg | edmmeg

[es16o | |eo16o | [eo1Bo | [eo1Bo

2oeMd)U|
92IA8(g uonjeoljddy

aoeJiaju|
92IAa(] Yo0|9g

(4114

U.S. Patent

Oct. 20, 2015 Sheet 3 of 6

'/— 202

OS Block Driver

300
Logical Logical Logical Logical Logical
Device Device Device Device Device
A B C D E
Command | Command | Command | Command | Command
Queue Queue Queue Queue Queue
302a 302b 302¢ 302d 302¢

304a

Block

Device A

Queue

Process

SAL I/O
Worker

Process

f

306a

SAL I/O
Worker
Process

f

306b

SAL /O
Worker
Process

306¢

SAL I/O
Worker
Process

306d

FIG. 3

SAL /O
Worker
Process

US 9,164,697 B2

306n

U.S. Patent Oct. 20, 2015 Sheet 4 of 6 US 9,164,697 B2

’//,~— 204

Application

400
Logical Logical Logical Logical Logical
Device Device Device Device Device
A B [D E
Command | Command | Command | Command | Command
Queue Queue Queue Queue Queue
402aa 402bb 402¢cc 402dd 402¢e

404a

Application
Device A
Queue
Process

SAL I/O SAL I/O SAL /O SAL IO SAL I/O
Worker Worker Worker Worker . . . Worker
Process Process Process Process Process

[

306a 306b 306¢ 306d 306n

FIG. 4

U.S. Patent

500a

Oct. 20, 2015 Sheet 5 of 6 US 9,164,697 B2

306

SAL
110
Worker
Process

Transport Transport

Process Process

500b

= ==
SSD SSD
104d 104e

FIG. 5

U.S. Patent

Block Device
Queue
Processes

600

\

Storage
Access
Layer

Application
Device Queue
Processes

400

Oct. 20, 2015

Sheet 6 of 6

Block Block Driver
0S - oc < | Command
Driver Sturctures
300 604
602 500

Event
Manager

Transport
Processes

SAL /O
Worker
Processes

Device

FIG. 6

306

104

US 9,164,697 B2

US 9,164,697 B2

1
METHOD AND ARCHITECTURE FOR
HIGHLY SCALABLE DATA STORAGE

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to large scale storage sys-
tems, and more particularly to a highly scalable storage sys-
tem for delivering high I/O operations per second (IOPS) via
multiple I/O threads.

2. Description of the Related Art

Today’s large companies and organizations require large-
scale high technology computing environments. Such envi-
ronments require equally large-scale data storage capabili-
ties. Inresponse, the industry of enterprise storage has formed
to provide large scale data storage having high reliability,
better fault tolerance, as well as a vast amount of available
data storage.

Enterprise storage systems often rely on very large disk
farms. Reliance upon these disk farms is based upon an
assumption that the underlying individual storage compo-
nents are low-performing, hence associated functionality (ex-
ample: caching on RAID systems) is focused on alleviating
the limitations that are imposed by having to maintain fault
tolerance. However, access to such storage is still based on
utilization of the operating system’s driver stacks.

Although conventional enterprise storage architectures
may utilize distributed clusters of storage and specialized
high-performance applications, they all utilize the traditional
operating system stacks and do not access the data storage
directly. Because traditional operating system processes and
threads are complicated and inefficient, conventional enter-
prise storage architectures do not support concurrency for I/O
processing.

In view of the foregoing, there is a need for systems and
methods that provide a highly scalable storage system for
delivering high I/O operations per second (IOPS) via multiple
1/O threads. As such, what is needed is an architecture that
identifies concurrency in I/O processing for modules and
processes at the architectural level to most efficiently utilize
CPU power to achieve very high 1/O operations per second
(IOPS). The architecture should take into account multiple
storage components in a system, and be scalable across mul-
tiple processing units. For easier maintainability, the system
should be capable of operating within a traditional operating-
system-based model.

SUMMARY OF THE INVENTION

Broadly speaking, embodiments of the present invention
address these needs by providing a highly scalable data stor-
age architecture that uses multiple I/O worker processes to
achieve concurrency and high IOPS. In one embodiment, an
architecture for scalable data storage is disclosed. The archi-
tecture includes a logical storage device having a logical
device queue, where the logical device queue includes a plu-
rality of command slots for storing input/output commands.
Also included is a plurality of I/O worker processes, each
associated with acommand slot of the logical device queue. A
logical device queue process also is included that is associ-
ated with the logical storage device. When a command is
placed in the logical device queue, the logical device queue
process provides an index for the command to an /O worker
process associated with the command slot storing the com-
mand. The I/O worker process then obtains the command
from the logical device queue and facilitates completion of
the command. The architecture can also include a plurality of

10

20

40

45

2

transport processes, each associated with a physical storage
device. The transport processes convert commands into pro-
tocol specific commands suitable for use with the associated
physical storage device. The device queue process can be a
block device queue process or an application device queue
process. Block device queue processes are associated with a
block device driver within an operating system. Application
device queue processes are associated with an application that
provides commands to the logical storage device directly.

A method for scalable data storage is disclosed in a further
embodiment of the present invention. The method includes
receiving a command for a logical storage device, where the
logical storage device is associated with a logical device
queue having a plurality of command slots for storing com-
mands. As above, an /O worker process is associated with
each command slot of the logical device queue. Next, the
command is stored in the logical device queue. Then a device
queue process provides an index of the command to an I/O
worker process associated with the command slot storing the
command. The I/O worker process then obtains the command
from the logical device queue, and provides the command to
a transport process that is associated with a physical storage
device. The transport process then converts the command into
a protocol specific command suitable for use with the asso-
ciated physical storage device. In general, each 1/0O worker
process is capable of associating with at least two transport
processes. Other aspects and advantages of the invention will
become apparent from the following detailed description,
taken in conjunction with the accompanying drawings, illus-
trating by way of example the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention, together with further advantages thereof,
may best be understood by reference to the following descrip-
tion taken in conjunction with the accompanying drawings in
which:

FIG.1is ablock diagram showing an exemplary computer
network having a highly scalable storage architecture, in
accordance with an embodiment of the present invention;

FIG. 2 is a logical diagram illustrating a highly scalable
data storage architecture, in accordance with an embodiment
of the present invention;

FIG. 3 is a logical block diagram showing an exemplary
block device interface, in accordance with an embodiment of
the present invention;

FIG. 4 is a logical block diagram showing an exemplary
application device interface, in accordance with an embodi-
ment of the present invention;

FIG. 5 is a logical block diagram showing an exemplary
SAL 1/O worker process data flow, in accordance with an
embodiment of the present invention; and

FIG. 6 is logical diagram showing the interaction of the
modules of a highly scalable storage architecture, in accor-
dance with an embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

An invention is disclosed for a highly scalable data storage
architecture for delivering very high input/output operations
per second (IOPS). In general, embodiments of the present
invention present a plurality of logical storage devices to the
operating system and applications, where each logical stor-
age device is associated with one or more physical storage
devices. Each logical storage device has an associated device
command queue having a plurality of command slots.

US 9,164,697 B2

3

Embodiments of the present invention create a storage access
layer I/O worker process for each command slot. In addition,
each logical storage device has an associated device queue
process that interfaces with the device command queue. In
operation, 1/0 commands for a particular logical storage
device are placed in the associated command queue. For each
command placed in the command queue, the associated
device queue process provides an index of command to the
storage access layer I/O worker process associated with the
particular command slot storing the I/O command. The stor-
age access layer /O worker process then obtains the com-
mand from the associated command slot and processes the
1/O command.

In the following description, numerous specific details are
set forth in order to provide a thorough understanding of the
present invention. It will be apparent, however, to one skilled
in the art that the present invention may be practiced without
some or all of these specific details. In other instances, well
known process steps have not been described in detail in order
not to unnecessarily obscure the present invention.

FIG. 1 is a block diagram showing an exemplary computer
network 100 having a highly scalable storage architecture, in
accordance with an embodiment of the present invention. The
computer network 100 includes a plurality of computer sys-
tems 102, each having one or more cores in a network con-
figuration. Each computer system 102 is in communication
with a plurality of physical storage devices 104a-104e, each
capable of storing data for the computer systems 102. In
addition, the computer systems 102 are in communication
with a plurality of storage devices 104/~-104i via a wide area
network (WAN) 106, such as the Internet. It should be noted
that the storage devices 104a-104; of the exemplary computer
network 100 can be any storage device capable of storing
data, such as hard disk drives (HDDs), solid state drives
(SSDs), tape storage, optical storage, RAID storage, or any
other storage device that will be apparent to those skilled in
the art after a careful reading of the present disclosure.

As will be discussed in greater detail subsequently,
embodiments of the present invention provide a highly-scal-
able architecture for delivering very high 1/O Operations per
Second (IOPS) and very high [/O bandwidth, efficiently uti-
lizing multi-core, multi-disk systems, with the ability to scale
across multiple systems. Embodiments of the present inven-
tion achieve very high parallelization of I/O operations via the
use of a platform that can support hundreds of thousands of
lightweight processes that communicate using messages and
that do not need to share state.

The architecture can support multiple classes of storage
devices, is repeatable, and scalable as more storage devices,
or more storage-transport channels, or more CPUs are added
to a system and as more systems are added to a network of
such systems. Embodiments of the present invention allow
storage installations to be configured in various combinations
and, as an installation grows, scale with the installation.

Furthermore, the architecture provides for easy and
focused addition of plug-ins that enhance the functionality,
while benefiting from a framework that is capable of very
high performance. For example, plug-ins can include: strip-
ing, mirroring, caching, virtualization, hierarchical storage
management, and others. Whether the result is a modified
behavior, or stacked functionality, embodiments of the
present invention allow for easier verification and mainte-
nance in production.

FIG. 2 is a logical diagram illustrating a highly scalable
data storage architecture 200, in accordance with an embodi-
ment of the present invention. The architecture 200 executes
over a platform that provides the ability to structure 1/O pro-

10

15

20

25

30

35

40

45

50

55

60

65

4

cessing as units of concurrent execution (‘processes’). A
single unit of logical functionality in the architecture is rep-
resented by a process that is defined once. Thousands of
processes, performing the same or many different logical
functions, can be efficiently replicated by the platform. One
or many processes can be scheduled automatically in a single
core, across multiple cores in a system, or across multiple
systems. Thus, the number of running processes can grow to
meet the I/O load placed on the system, and the scalability of
the system is bounded only by the actual number of cores and
systems. As will be discussed below, each process imple-
ments its I/O-related work using a synchronous or asynchro-
nous model, with the platform taking care of the scheduling
involved therein.

The platform supports a simple and opaque facility for
messaging and event notification among processes. Addition-
ally, platform-controlled protection of a module’s state is
provided, which eliminates the necessity for system aware-
ness or the implementation of locks in the functional logic. A
process could be run in platform-supervised mode, if the
behavior that it implements warrants it. The platform sup-
ports automatic recovery of a failed process, to the specific
extent defined for the recoverable process. Another important
ability of the platform is ‘hot’, dynamic update of any com-
ponent in the system with new code or even new behavior.

In general, the architecture 200 presents the underlying
storage to the system via a block device interface 202 and an
application device interface 204. The block device interface
202 presents the underlying storage as one or more block
devices, in a manner that is appropriate to the particular
operating system being utilized, and visible at the highest and
most generic level that is independent of protocol-dependent
stacks. The application device interface 204 presents the
underlying storage through an application interface, which
allows the application to interact with the underlying storage
without needing to use the operating system kernel and I/O
stack, and thus avoiding the latency associated therewith.

To provide the above described functionality, embodi-
ments of the present invention group the physical devices
104a-104; of the system into a plurality of logical devices
206a-206¢e, which are presented to the system as available
storage devices. Specifically, the physical storage devices
104a-104i of the system are grouped into a plurality oflogical
devices for the block device interface 202 and the application
device interface 204. For example, in FIG. 2, the physical
storage devices 104a-104; have been grouped into logical
devices 206a-206¢ for the block device interface 202, and
logical devices 206aa-206¢e for the application device inter-
face 204.

Each logical device 206a-206¢e is in communication with
one or more actual physical storage device s 104a-104/, and is
presented to the system as a single logical storage device,
regardless of the actual number of physical storage devices
that are associated with the particular logical device. For
example, in FIG. 2, logical device A 2064 of the block device
interface 202 is associated with physical storage device 104a.
Logical device D 206d of the block device interface 202 is
associated with two physical storage devices: physical stor-
age device 1044 and 104e, which are presented to the system
as a single logical device (i.e., logical device D 2064). Simi-
larly, Logical device E 206¢ of the block device interface 202
is associated with physical storage devices 104, 104g, 104/,
and 1047, via a WAN 106, all of which are presented to the
system as a single logical device (i.e., logical device E 206e¢).
As a result, when the system or application requests access to
storage, the block device interface 202 or application device

US 9,164,697 B2

5

interface 204 provides access via the appropriate logical
device, as described in greater detail next with reference to
FIG. 3.

FIG. 3 is a logical block diagram showing an exemplary
block device interface 202, in accordance with an embodi-
ment of the present invention. The block device interface 202
includes an operating system (OS) block device driver 300
having a plurality of logical device command queues 302a-
302¢, one for each logical device associated with the block
device interface 202. For example, FIG. 3 illustrates a logical
device A command queue 302q for /O commands directed to
logical device A 206a, a logical device B command queue
3025 for I/O commands directed to logical device B2065, and
so forth. In addition, a block device queue process 304 is
associated with each logical device associated with the block
device interface 202.

When a new logical device is created, embodiments of the
present invention generate a logical device command queue
302 and a block device queue process 304 for the newly
created logical device. In addition, a storage access layer
(SAL) I/O worker process 306 is generated for each com-
mand slot of the logical device command queue 302. For
example, ifalogical device command queue 302 includes 256
command slots for [/O commands, 256 SAL 1/0 worker pro-
cesses 306a-306n are generated. Each generated SAL 1/O
worker process 306a-306n is associated with a particular
command slot of the associated logical device command
queue 302 and is responsible for handling the /O commands
placed in its associated command slot.

The block device queue process 304 associated with the
particular logical device facilitates transfer of I/O commands
to the respective SAL 1/O worker process 306. More specifi-
cally, when an /O command is presented to the OS block
driver 300 for a particular logical device, the OS block driver
300 places the /O command in the logical device command
queue 302 of the selected logical device. For example, when
an I/0 command is received for logical device A 2064, the OS
block driver 300 places the /O command in the logical device
A command queue 302a associated with logical device A
206a. The block device A queue process 304a, which is
associated with logical device A 206q, provides an index of
the particular command slot storing the [/O command to the
SAL I/O worker process 306 associated with the particular
command slot. The selected SAL I/O worker process 306 then
obtains the I/O command from its associated command slot
and handles completion of the I/O command. In this manner,
IOPS are increased as each SAL 1/O worker process 306
operates independently to complete the commands placed in
the associated logical device command queue 302.

The application device interface functions in a similar
manner to allow applications to directly interface with the
underlying storage. FIG. 4 is alogical block diagram showing
an exemplary application device interface 204, in accordance
with an embodiment of the present invention. The application
device interference 204 includes a plurality of logical device
command queues 402aa-402¢e, one for each logical device
associated with an application 400. For example, FIG. 4 illus-
trates a logical device A command queue 402a for /O com-
mands directed to logical device A 206aa, a logical device B
command queue 40255 for I/O commands directed to logical
device B 206656, and so forth. In addition, an application
device queue process 404 is associated with each logical
device associated with the application 400.

When a new logical device is created for the application
device interface 204, embodiments of the present invention
generate a logical device command queue 402 and an appli-
cation device queue process 404 for the newly created logical

20

25

35

40

45

6

device. In addition, a SAL 1/O worker process 306 is gener-
ated for each command slot of the logical device command
queue 402. Each generated SAL 1/O worker process 306a-
306% is associated with a particular command slot of the
associated logical device command queue 402 and is respon-
sible for handling the I/O commands placed in its associated
command slot.

The application device queue process 404 associated with
the particular logical device facilitates transfer of I/O com-
mands to the respective SAL 1/O worker process 306. When
an application 400 presents an /O command for a particular
logical device, the I/O command is placed in the logical
device command queue 402 of the selected logical device. For
example, when an application 400 presents an /O command
for logical device A 206aa, the [/O command is placed in the
logical device A command queue 402aq associated with logi-
cal device A 206aa. The application device A queue process
404a, which is associated with logical device A 206aa, pro-
vides an index of the particular command slot storing the I/O
command to the SAL I/O worker process 306 associated with
the particular command slot. The selected SAL 1/0 worker
process 306 then obtains the /O command for its associated
command slot and handles completion of the /O command,
as described next with reference to FIG. 5.

FIG. 5 is a logical block diagram showing an exemplary
SAL 1/O worker process data flow, in accordance with an
embodiment of the present invention. As illustrated in FIG. 5,
each SAL I/O worker process 306 is associated with one or
more transport processes 500, which facilitate access to asso-
ciated physical storage devices 104 of the underlying storage.
In general, each port or controller of the network is associated
with a transport process 500, which is responsible for con-
verting [/O commands to protocol-specific formats for the
associated physical storage device. The transport process 500
also issues the converted /O commands to the relevant physi-
cal storage devices in a transport-specific manner. Each trans-
port process 500 also is responsible for the detection of the
completion of the commands it issues. At the completion of
an I/0 command, the transport process 500 sends the comple-
tion information directly to the associated SAL 1/0O worker
process 306 specified in the command itself.

For example, in FIG. 5, when the SAL 1/O worker process
306 obtains an I/O command for its associated command slot,
the SAL I/O worker process 306 provides the /O command to
the transport processes 500a and 50056 associated with the
SAL I/O worker process 306. Each transport process 500a
and 5005 converts its portion of the I/O command to protocol-
specific formats for the associated physical storage devices
1044 and 104e. Each transport process 500a and 5005 also
issues the converted /O command to the relevant physical
storage devices 104d and 104e in a transport-specific manner.

FIG. 6 is logical diagram showing the interaction of the
modules of a highly scalable storage architecture, in accor-
dance with an embodiment of the present invention. As
described above and illustrated in FIG. 6, the highly scalable
storage architecture of the embodiments of the present inven-
tion includes a storage access layer 600 in communication
with a plurality of block device queue processes 304 and a
plurality of application device queue processes 400. In addi-
tion, the storage access layer 600 is in communication with an
event manager 602, which provides event management and
notification to the modules of the architecture. Each block
device queue process 304 is in communication with the OS
block driver 300, which provides access to the block driver
command structures 604. In addition, a plurality of SAL I/O
worker processes 306 are included that facilitate completion
of I/O commands. Each SAL I/O worker process is in com-

US 9,164,697 B2

7

munication with one or more transport processes 500, which
facilitate access to the actual physical storage devices 104 of
the network.

The storage access layer 600 is the destination of events
and notices resulting from the discovery of each physical
storage device 104 on the transport interface. It is in the
storage access layer 600 that logical devices and their asso-
ciations with transport devices, and the attributes associated
with the logical devices, are created.

The storage access layer 600 functions also include the
interpretation of configuration data, maintenance of logical
metadata on devices, and management of steps in ensuring
the readiness of a logical device for /O access. It is involved
in the creation of a block device queue processes 304 and
application device queue processes 400 for access to a logical
device, and for the starting and supervision of the SAL 1/O
worker processes 306.

The storage access layer 600 creates a block device queue
process 304 for each logical device presented to the operating
system. The block device queue process 304 supports a mes-
sage-queue interface to the OS block device driver 300 run-
ning in the OS’ kernel mode. As described previously, the OS
block device driver 300 creates each command ina ‘slot’ in its
private command-structure memory 604. To issue a com-
mand, the OS block device driver submits the index of the
command’s slot on the message queue to the associated block
device queue process 304. The block device queue process
304 continually pulls command indexes off the logical device
command queue 302 and forwards each index to the associ-
ated SAL I/0O worker process 306 responsible for executing a
command submitted on that slot. The association between
each command slot and the I/O worker process is set up at the
time of creation of the block device queue process 304.

In addition, an application device queue process 400 is
created for each logical storage device presented to an appli-
cation. The application device queue processes 400 are simi-
lar to the block device queue processes 304. As a result,
applications accessing a logical device via an application
device queue process 404 can achieve significantly higher
IOPS than can be achieved by accessing the same device via
the interface supported by the OS’ device subsystem.

The event manager 602 provides a means for other mod-
ules in the system, such as the storage access layer 600, to
hook up handlers for event processing. The event manager
602 also supports persistent logging of events, filtered by the
severity level of the event. Logging can be to multiple outputs,
and can be controlled dynamically.

To facilitate command conversion to protocol-specific for-
mats required by the physical storage devices 104 of the
system, there is at least one transport process 500 for each port
and/or host bus adapter (HBA) on the transport interface that
controls the physical storage devices used by the system. For
example, in one embodiment, a transport process 500 can be
created per physical device.

As mentioned previously, each transport process 500 per-
forms discovery of the physical devices 104 attached, and
generate events, enclosing the information necessary for
accessing the device for I/O. This information includes not
only the device’s attributes, but also the identifier for the
transport process 500 to which transport commands for the
device are forwarded.

Each transport process 500 also is responsible for convert-
ing 1/0 commands to the protocol-specific formats, and issu-
ing the converted [/O commands to the relevant physical
storage devices 104 in a transport-specific manner. In addi-
tion, each transport process 500 is responsible for the detec-
tion of the completion of the commands it issued. At the

10

15

20

25

30

35

40

45

50

55

60

65

8

completion of a command, the transport process 500 sends
the completion information directly to the SAL 1/0O worker
process 306 specified in the command itself.

As described above, a SAL I/O worker process 306 is
created for each command slot in each logical device com-
mand queue in the system. The SAL I/O worker processes
306 are concurrently executed, each dedicated to executing a
logical operation to its completion. In one embodiment, the
logic executing in each SAL I/O worker processes 306 can be
simple and sequential. However, many such SAL 1/O worker
processes 306 can be executed concurrently. As a result, the
storage access layer 600 can scale dynamically with [/O activ-
ity, and across the processing resources available. Moreover,
the SAL 1/0 worker processes 306 allow for maximum over-
lap in I/O processing, thus significantly increasing the aggre-
gate JOPS of the system.

It should be noted that each SAL 1/O worker process 306
can have different and individual attributes that allow each
SAL I/O worker processes 306 to function in different and
specific ways. For example, a specific SAL 1/O worker pro-
cess 306 can be configured to support the mirroring of two
disks. As such, the SAL 1/O worker process 306 can issue a
transport command to one or both of the transport processes
500 that support the member disks of the mirror.

Although the foregoing invention has been described in
some detail for purposes of clarity of understanding, it will be
apparent that certain changes and modifications may be prac-
ticed within the scope of the appended claims. Accordingly,
the present embodiments are to be considered as illustrative
and not restrictive, and the invention is not to be limited to the
details given herein, but may be modified within the scope
and equivalents of the appended claims.

What is claimed is:

1. A method for scalable data storage, comprising:

receiving a command for a logical storage device, the logi-

cal storage device being associated with a logical device
queue, the logical device queue comprising a plurality of
command slots for storing commands, and a plurality of
input/output (I/0) worker processes being associated
with the logical device queue and a separate /O worker
process being associated with each respective command
slot of the logical device queue;

storing the command in a command slot of the logical

device queue;
providing an index of the command to the I/O worker
process associated with the command slot storing the
command using a device queue process; and

facilitating completion of the command by the I/O worker
process associated with the command slot storing the
command by the /O worker process obtaining the com-
mand from the logical device queue.

2. A method as recited in claim 1, further comprising pro-
viding the command from the 1/O worker process to a trans-
port process, wherein the transport process is associated with
a physical storage device.

3. A method as recited in claim 2, further comprising the
operation of converting the command into a protocol specific
command suitable for use with the associated physical stor-
age device.

4. A method as recited in claim 1, wherein the device queue
process is a block device queue process associated with a
block device driver within an operating system.

5. A method as recited in claim 1, wherein the device queue
process is an application device queue process associated
with an application, wherein the application provides com-
mands to the logical storage device.

US 9,164,697 B2

9

6. A method as recited in claim 1, wherein each logical
storage device is associated with a device queue process.

7. A method as recited in claim 1, wherein each I/O worker
process is capable of associating with at least two transport
processes.

8. An architecture for scalable data storage, comprising:

a logical storage device having a logical device queue,
wherein the logical device queue includes a plurality of
command slots for storing input/output commands;

aplurality of I/O worker processes, each associated with a
command slot of the logical device queue;

a logical device queue process associated with the logical
storage device,

wherein the logical device queue process provides an index
for a command stored in the logical device queue to an
1/O worker process associated with the command slot
storing the command, and wherein the /O worker pro-
cess obtains the command from the logical device queue
and facilitates completion of the command.

9. An architecture as recited in claim 8, further comprising

a plurality of transport processes, wherein each transport
process is associated with a physical storage device.

10. An architecture as recited in claim 9, wherein each
transport process converts commands into protocol specific
commands suitable for use with the associated physical stor-
age device.

11. An architecture as recited in claim 9, wherein the device
queue process is a block device queue process associated with
a block device driver within an operating system.

12. An architecture as recited in claim 9, wherein the device
queue process is an application device queue process associ-
ated with an application, wherein the application provides
commands to the logical storage device.

13. An architecture as recited in claim 9, wherein each
logical storage device is associated with a device queue pro-
cess.

14. An architecture as recited in claim 9, further compris-
ing an event manager that handles events occurring within the
architecture.

5

10

15

20

25

30

35

10

15. An architecture as recited in claim 9, further compris-
ing storage access layer, wherein the storage access layer
creates a device queue process for each detected logical stor-
age device.

16. A method for scalable data storage, comprising:

receiving a command for a logical storage device, the logi-

cal storage device being associated with a logical device
queue, the logical device queue comprising a plurality of
command slots for storing commands, and wherein a
plurality of input/output (1/0) worker processes being
associated with the logical device queue and a separate
1/O worker process being associated with each respec-
tive command slot of the logical device queue;

storing the command in the logical device queue;

providing an index of the command to the I/O worker

process associated with the command slot storing the
command using a device queue process;

obtaining by the I/O worker process the command from the

logical device queue;

providing the command from the I/O worker process to a

transport process, the transport process being associated
with a physical storage device; and

converting the command into a protocol-specific command

suitable for use with the associated physical storage
device.

17. A method as recited in claim 16, wherein the device
queue process is a block device queue process associated with
a block device driver within an operating system.

18. A method as recited in claim 16, wherein the device
queue process is an application device queue process associ-
ated with an application, wherein the application provides
commands to the logical storage device.

19. A method as recited in claim 16, wherein each logical
storage device is associated with a device queue process.

20. A method as recited in claim 16, wherein each 1/O
worker process is capable of associating with at least two
transport processes.

